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Abstract 

 

A process for the secure transmission of data is presented that has to a certain degree the 

advantages of the one-time pad (OTP) cipher, that is, simplicity, speed, and information-

theoretically security, but overcomes its fundamental weakness, the necessity of securely 

exchanging a key that is as long as the message. For each transmission, a dedicated one-time 

pad is generated for encrypting and decrypting the plaintext message. This one-time pad is 

built from a randomly chosen set of basic keys taken from a public library. Because the basic 

keys can be chosen and used multiple times, the method is called multiple-time pad (MTP) 

cipher. The information on the choice of basic keys is encoded in a short keyword that is 

transmitted by secure means. The process is made secure against known-plaintext attack by 

additional design elements. The process is particularly useful for high-speed transmission of 

mass data and video or audio streaming. 
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1  Introduction 

 

A cipher is an algorithm for encryption and decryption with the purpose of securely 

transmitting data. The only information-theoretically secure and potentially unbreakable 

cipher is the one-time pad (OTP) cipher (U.S. Patent 1 310 719). It is simple to implement. 

Assuming the plaintext is a series of bits, it works as follows. A fresh OTP consisting of 

random series of bits that is at least as long as the plaintext is generated as a key. The 

plaintext is XORed with the key to create the ciphertext, meaning that each bit of the 

ciphertext is produced by an exclusive-or (XOR) logical operation applied to the 

corresponding two bits of plaintext and key. To decrypt the ciphertext, it is XORed with the 

same key. Because the same key is used for encryption and decryption, OTP is called a 

symmetric-key cipher.  

 

Plaintext encrypted using OTP cannot be retrieved without the encrypting key. However, 

there are some conditions that must be met to not compromise the cipher. The practically 

most problematic one of these conditions is that the key must be transmitted to the receiver, 

but must not fall in the hands of a potential code breaker (in the following called attacker). 

This points to a fundamental weakness of the OTP cipher in that one must be able to securely 

transmit large amounts of data, that is, the key, to the receiver of the message.  

 

When using other symmetric-key ciphers, such as the Advanced Encryption Standard (AES, 

NIST 2001), the problem of securely transmitting the symmetric-key cipher session key is 
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often solved by using an asymmetric-key cipher, such as the Rivest Shamir Adleman (RSA) 

cipher, for key transfer.  

 

In an asymmetric-key cipher, the public key of the receiver, which can be known to everyone, 

is used for encrypting messages and the private key of the receiver, which is known only to 

him, for decrypting messages. Public and private keys are mathematically related. While the 

public key can easily be computed from the private key, computation of the private key from 

the public key is possible in principle but requires an impractical amount of computational 

resources and time.  

 

In RSA, the size of the public key is currently 1,024 to 4,096 bits. The size of the plaintext 

message must be smaller than the size of the key. Furthermore, randomized padding must be 

added to the message before encrypting it for ensuring security. This leaves the maximum 

RSA message size to be 117 bytes when the RSA key size is 1,024 bits (128 bytes). This is 

sufficient for transmitting the key of a symmetric-key cipher, such as AES with key sizes of 

128 or 256 bits (16 or 32 bytes). However, it is insufficient for transmitting the key of the 

OTP cipher given that this key is as large as the message actually to be transmitted. Splitting 

the large OTP cipher key, or better directly the message, into 117-byte blocks and separately 

transmitting them with the RSA cipher is usually impractical because, compared to 

symmetric-key ciphers, this is too slow. 

 

Hence it seems desirable to develop a process for the transmission of data that exhibits the 

advantages of the OTP cipher, namely simplicity, speed, and information-theoretically 

security, but overcomes its fundamental weakness, the necessity of securely exchanging a key 

that is as long as the message. 

 

The Limited Storage Model proposed by Maurer [1], the Limited Access Model proposed by 

Rabin [2], and the Re-Randomizing Database concept proposed by Valiant [3] attempt to 

achieve this goal. All are based on the idea of publicly available random data. The Limited 

Storage Model requires an expensive random data distribution system, which tends to make it 

impractical. Its security relies on the supposedly high cost of data storage, which, considering 

the rapid decline of this cost, does not seem to be a permanently protecting factor. The 

Limited Access Model requires a voluntary network of a large number of computers each 

maintaining and updating random pages and acting as page server nodes, which impairs its 

practicality. Its security relies on the random data downloaded from the page server nodes not 

all being intercepted by an attacker, which makes it vulnerable. The Re-Randomizing 

Database concept requires the secure exchange of one key for each transmitted bit of 

information, which makes it impractical. Its security relies on the users’ communication with 

the database not being intercepted by an attacker, which makes it vulnerable. 

 

A hybrid cryptosystem having the desired properties is proposed here. A symmetric-key OTP-

based cipher, in the following called multiple-time pad (MTP) cipher, is used for encrypting 

and decrypting the plaintext and another cipher, preferably an asymmetric-key cipher, is used 

for transmitting the symmetric key or, more precisely, information encoded in a short key 

from which the symmetric key can be computed. First, the basic design of the MTP cipher is 

outlined and its security against various kinds of attacks is discussed. It is then shown how a 

weakness to a particular kind of attack is overcome by an augmented design containing 

additional design elements. This outline is followed by a detailed description of the MTP 

cipher, a discussion of its security against various kinds of attack, and the description of 

variations of the MTP cipher. 
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2 Outline of the MTP cipher 

 

A certain number k of random binary basic keys of size s are individually generated and 

consecutively numbered from 1 to k. The set of basic keys is known to sender and receiver. It 

can also be distributed publicly and be intended for general use thus serving for the exchange 

of messages between arbitrary parties. For maximum security, linear independency between 

the basic keys should be largely ensured. They are linearly independent if none of them can 

be obtained by XORing any number of the other basic keys. For the values of k and s outlined 

below, it is probable that this condition is sufficiently fulfilled provided the basic keys are 

generated in a perfectly random process. In the following, the basic keys are called MTP basic 

keys. 

 

An alternative method is possible for generating the MTP basic keys as described in the next 

section. For the sake of simplicity, this description of the MTP cipher basic design is based on 

the method explained in the previous paragraph. 

 

The sender of the message randomly chooses a subset of the set of k MTP basic keys. The 

subset to be chosen has a size g, that is, it contains g basic keys, where g is in the range of 1 to 

k. The choice is defined by the set of serial numbers assigned to the chosen MTP basic keys. 

The sender then computes his private MTP key by performing a concatenated XOR operation 

on the chosen basic keys. That is, the first selected basic key is XORed with the second 

selected basic key, the result is XORed with the third selected basic key and so on until the 

result of the penultimate XOR operation is XORed with the g
th

 selected basic key. Because 

XOR operations are commutative, the order of the individual operations in concatenated XOR 

operations can be changed without changing the result. 

 

The sender uses his private MTP key for encrypting his binary plaintext message. The size of 

the message must be equal to or smaller than s, the size of both the MTP basic keys and the 

private MTP key. Encryption is done by XORing the plaintext with the private MTP key. The 

resulting MTP ciphertext is transmitted to the receiver. 

 

In addition, the sender encodes, encrypts, and transmits to the receiver the set of serial 

numbers of the chosen MTP basic keys using an asymmetric-key cipher and the 

corresponding public key of the receiver. Because the existence or nonexistence of k MTP 

basic keys in the private MTP key can be encoded in a string of k bits, the encoding leads to a 

binary keyword of length k. The keyword ciphertext resulting from encrypting the keyword is 

transmitted to the receiver. Provided k is properly chosen, the size of the data to be encrypted 

in this step is manageable by an asymmetric-key cipher such that it can be transmitted to the 

receiver in one unsplit transmission. If k = 256, for instance, the RSA cipher with a key size 

of 1,024 bits can be used because the maximum RSA message size then is 117 bytes and the 

size of the keyword is 256 bits, which correspondents to 32 bytes. 

 

The receiver decrypts the keyword ciphertext using the asymmetric-key cipher and his private 

key and obtains the keyword from which he decodes the set of serial numbers of the selected 

MTP basic keys. With this information and the set of all numbered MTP basic keys, which 

are known to him, he can identify the MTP basic keys chosen by the sender and compute the 

sender’s private MTP key by XORing the identified MTP basic keys. 

 

Finally, the receiver XORs the MTP cyphertext with the sender’s private MTP key and thus 

obtains the original binary plaintext message. 
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One advantage of the hybrid MTP cipher is that it inherits the simplicity of the OTP cipher. It 

can easily be implemented in computer software and hardware. Because it only involves the 

XOR command, which is executed in a native machine operation, it is fast. Thus, it is 

particularly appropriate for a secure transmission of mass data such as audio and video signals 

as well as for secure telephone communication. A further advantage is that the MTP basic 

keys need to be generated and distributed only once. The cost of ensuring randomness is 

amortized quickly. 

 

The MTP cipher does not inherit the perfect information-theoretically security of the OTP 

cipher because the private MTP key space is smaller than the OTP key space. The security of 

the MTP cipher is further discussed in the following. 

 

Ciphertext-only attacks are considered first. Vetting a new cipher includes testing of large 

quantities of ciphertext for any statistical departure from random noise. Assuming perfectly 

random MTP basic keys, the private MTP key generated from a randomly selected subset of 

MTP basic keys will also be perfectly random. When an arbitrary plaintext is XORed with 

such random key, the resulting ciphertext also is random. The same private MTP key should 

not be used twice to not compromise security. This is ensured with a high degree of 

probability by randomly choosing the MTP basic keys provided k is large enough. 

 

Another ciphertext-only attack is called brute-force attack, in which all possible keys are tried 

and the result of each decryption attempt is checked as to whether it is a valid plaintext. As 

shown further below, the size of the private MTP key space can easily be made large enough 

so that a brute-force attack will not succeed. 

 

Next, a known-plaintext attack is considered, where the attacker knows the ciphertext and a 

part of the plaintext. It is assumed that r bits of plaintext are known. When these bits are 

XORed with the corresponding bits of ciphertext, the corresponding bits of the private MTP 

key result. Based on this information, it can be attempted to identify the subset of g chosen 

MTP basic keys, and thus the complete private MTP key, for retrieving the remaining 

plaintext. When r = k, this is an easy task because then a well-defined system of equations 

results that can be solved with Gauss’s algorithm. Known plaintext of such a size is possible. 

In image or audio data, it can appear as long series of zeros. In such a case, the basic design of 

the MTP cipher described above is not secure against known-plaintext attack. 

 

The weakness of the basic design of the MTP cipher to a known-plaintext attack is overcome 

by adding further design elements as described in the following. 

 

In addition to XORing the plaintext with the private MTP key, it is XORed with a first 

random key of size s, which is separately generated by the sender for this purpose, and 

XORed with a second random key of size s. The second random key is obtained from the 

other keys, by a computation rule further specified in the next section. The resulting MTP 

ciphertext and the encrypted keyword carrying the information on the choice of MTP basic 

keys are transmitted to the receiver. Furthermore, the first random key is encrypted and the 

resulting MTP ciphertext is transmitted to the receiver using the same MTP cipher as used for 

the plaintext message, but a generally different private MTP key. The latter key is generated 

from a different subset of MTP basic keys, whose serial numbers are encoded in a keyword 

that is securely transmitted to the receiver using the asymmetric-key cipher, that is, as a 

second keyword ciphertext. 
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The receiver decrypts the two keyword ciphertexts using the asymmetric-key cipher and his 

private key and obtains the two keywords. From one keyword, he decodes the set of serial 

numbers of the MTP basic keys used for encrypting the plaintext. From the other keyword, he 

decodes the set of serial numbers of the MTP basic keys used for encrypting the first random 

key. With this information and the set of all numbered MTP basic keys, which are known to 

him, he computes the sender’s private MTP keys used for encrypting the plaintext and the 

first random key. 

 

The receiver XORs the encrypted plaintext, that is, the plaintext ciphertext, and the encrypted 

first random key, that is, the random key ciphertext, with the respective private MTP keys. 

From the first operation, the plaintext XORed with the first and second random keys results. 

From the second operation, the receiver obtains the first random key. He obtains the second 

random key by using the respective computation rule, which is known to him. The result of 

the first operation is XORed with the first and second random keys, which finally gives the 

original plaintext message. 

 

The additional XORing of the plaintext with a random key aims at randomizing the plaintext 

so that a known-plaintext attack is averted. XORing with a second random key is provided to 

prevent the following scenario that is possible when only one random key is used. An attacker 

might know both the plaintext ciphertext and the random key ciphertext. When both 

ciphertexts are XORed, the random key cancels and the plaintext XORed with the sender’s 

private MTP keys is obtained. The result would be almost as vulnerable to a known-plaintext 

attack as when using the basic design of the MTP cipher because the two remaining private 

MTP keys, when XORed, result in a combined private MTP key that has the same key space 

size as one single private MTP key. This vulnerability is eliminated by XORing with a second 

random key. Because the second random key is generated from the other keys, there is no 

need to transmit it to the receiver, which would compromise the cypher in the manner 

described above.  

 

It is suggested to use an asymmetric-key cipher to transmit the information from which the 

private MTP keys can be deduced. Asymmetric-key ciphers in general and the RSA cipher in 

particular seem particularly suitable and preferable in the given context. Nevertheless, any 

sufficiently secure cipher, including symmetric-key ciphers and even the OTP cipher, can 

alternatively be used for transmitting the keywords that carry the private MTP key 

information. Further variations of the process outlined above are possible and described 

below. 

 

 

3 Detailed description of the MTP cipher 

 

3.1 XOR logical operation 

 

The exclusive-or (XOR) logical operation used here is denoted by the symbol +. In  

 

A = B + C (1) 

 

for example, the XOR operation is consecutively applied to two corresponding bits, that is, 

bits at corresponding positions, of B and C resulting in the corresponding bit of A, where A, B, 

and C are binary strings of the same length, that is, of the same number of bits. Because a 

binary string XORed with itself is a zero string (where all bits of the string are zero), that is, 



 
 
 

  6 

 

C + C = 0 (2) 

 

and because XOR operations are commutative and the order of the individual operations in 

concatenated XOR operations does not affect the result, the above operation is inverted by 

applying it again, that is 

 

B = A + C (3) 

 

3.2 MTP basic keys 
 

The MTP basic keys are binary strings of length s. That is, each consists of a series of s bits. 

The MTP basic keys can be generated in alternative ways. 

 

In a first method, k MTP basic keys B1, B2, …, Bk are individually and independently 

generated. The MTP basic keys should be random and linearly independent with respect to 

XOR operations. They are available at both the sender and the receiver, possibly public, and 

intended for multiple use. Each key is assigned a different serial number between 1 and k. 

Linearly independent with respect to XOR operations means that none of the k MTP basic 

keys follows from a single or concatenated XOR operation on two or more of the other MTP 

basic keys. Perfect linear independency is preferable, but a high degree of linear 

independency can be sufficient. 

 

In a second method, the MTP basic keys are taken as substrings of a master string B of length 

l, with l ≥ s. Master string B should be random and is available at both the sender and the 

receiver, possibly public, and intended for multiple use. An MTP basic key Bq is identified by 

a pointer q in the range 1 ≤ q ≤ l. Bq is taken as the substring of B that commences at position 

q. When the remaining length of B is shorter than the length of Bq, that is, when the sum of q 

and s is larger than l, the remaining final substring of Bq is taken as the respective initial 

substring of B. This is equivalent to appending a copy of B to itself or to connecting the last 

position of B to its first position thus creating a looped string. In this method, l different MTP 

basic keys are available. They are numbered consecutively from 1 to l, where the number that 

identifies an individual MTP basic key Bq is the value of q that indicates the position in B of 

the first bit of Bq. 

 

In both methods, the respective pre-generated data, that is, the set of MTP basic keys B1, B2, 

…, Bk or the master string B, are called library. The randomness of this data should be as high 

as possible and preferably be perfect. Perfectly random data can be produced by physical 

random generators. The cost of ensuring perfect randomness is amortized quickly because the 

library is intended for multiple use and needs to be generated and distributed only once or, at 

least, only once in a certain period of use. 

 

3.3 Private MTP keys 

 

Two private MTP keys, KP and KR, are generated. KP serves for encrypting the plaintext. KR 

serves for encrypting the first random key. They are generated by the following concatenated 

XOR operations 

 

KP = Bi + Bj + … + Bm + Bn (4) 
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KR = Br + Bs + … + Bv + Bw (5) 

 

where Bi, …, Bn and Br, …, Bw are MTP basic keys randomly chosen by the sender. In 

particular, g out all available MTP basic keys are chosen, where also g is generally random 

and generally differs for KP and KR. The two private MTP keys are binary strings of length s.  

 

3.4 First random key 

 

The first random key, R1, is a binary string of length s. For each application, it is freshly 

generated by the sender as a true or pseudo random number. Pseudo randomness can be 

sufficient depending on the kind of plaintext and the period of the pseudo random number 

sequence. 

 

3.5 Second random key 

 

The second random key, R2, is a binary string of length s. It is generated from the other keys 

by a defined computation rule.  

 

3.6 Computation rule 

 

The computation rule defines how R2 is generated from R1 and/or KP and/or KR. It should be 

such that both R2 and (R1 + R2) are as random as R1 and different from R1. The computation 

rule does not need to be invertible. For some variations of the MTP cipher, described below, it 

must not be invertible. Various computation rules are possible. For example, it can be a 

transposition rule. A transposition rule, for example, can be as follows. The first bit of R2 is 

set to the second bit of R1, the second bit of R2 is set to the third bit of R1, and so on until the 

penultimate bit of R2 of is set to the last bit of R1, and then the last bit of R2 is set to the first 

bit of R1. That is, all bits of R1 are shifted one position up and the first bit of R1 is moved to 

the end. Variations of this procedure are obtained by defining different relationships between 

the position of a respective bit of R2 and the position of the corresponding bit of R1 to which 

the respective bit of R2 is set. 

 

As a second example, the computation rule can be a transposition rule defined as follows. If 

the first bit of KP is zero, the first bit of R2 is set to the second bit of R1; otherwise, it is set to 

the third bit of R1; if the second bit of KP is zero, the second bit of R2 is set to the third bit of 

R1; otherwise, it is set to the fourth bit of R1; and so on until the penultimate bit of R2 is set to 

the last or first bit of R1 depending on whether the penultimate bit of KP is zero or one, and 

finally the last bit of R2 is set to the first or second bit of R1 depending on whether the last bit 

of KP is zero or one. Variations of this procedure are obtained by replacing KP by KR or some 

combination of KP and KR, by exchanging R1, KP, and KR within such procedures, or by 

defining different relationships between the position of a respective bit of R2 and the positions 

of the corresponding bits of R1, KP, and KR from which the respective bit of R2 results. 

 

3.7 Plaintext  

 

The plaintext, P, is a binary string of length s. If the actual plaintext message is shorter than s 

bits, the remaining bits of P are set to zero. Alternatively, P, KP, KR, R1, and R2, as well as CP 

and CR defined below, are truncated to fit the length of the actual plaintext message.  
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3.8 Plaintext ciphertext 

 

After having generated KP, R1, and R2, the sender generates the plaintext ciphertext, CP, by the 

following concatenated XOR operation 

 

CP = P + KP + R1 + R2 (6) 

 

CP is a binary string of length s. Because R1 and R2 are unknown to an attacker and because of 

the requirement that the computation rule for generating R2 is such that (R1 + R2) is as random 

as R1, an attacker cannot deduce any information on the private MTP key KP even if CP and P 

are partly or fully known. Hence a known-plaintext attack on CP will fail. 

 

3.9 Random key ciphertext 

 

After having generated R1 and KR, the sender generates the random key ciphertext, CR, by the 

XOR operation 

 

CR = R1 + KR (7) 

 

CR is a binary string of length s. Because R1 is random, an attacker cannot gain any 

information from CR on KR or R1. 

 

3.10 Keywords 

 

The sender generates two keywords, WP and WR, in which the information on the MTP basic 

key choices are encoded. WP serves for identifying the MTP basic keys chosen for generating 

the private MTP key KP. WR serves for identifying the MTP basic keys chosen for generating 

the private MTP key KR. 

 

If the MTP basic keys are generated by the first method described above and g is not limited 

to small values (see below), the information on the choice of MTP basic keys is preferably 

encoded as follows. Each keyword is a binary string of length k. The bits of WP are set to one 

at the positions i, j, …, m, n (see Eq. (4)) and set to zero at all other positions. The bits of WR 

are set to one at the positions r, s, …, v, w  (see Eq. (5)) and set to zero at all other positions. 

The serial numbers of the respectively chosen MTP basic keys are thus encoded in a compact 

form. When the MTP basic keys are generated by the first method and g is limited to small 

values, the procedure outlined in the next paragraph, with k instead of l, can also be 

advantageous. 

 

If the MTP basic keys are generated by the second method described above, the information 

on the choice of MTP basic keys is preferably encoded as follows. Each of the respective 

pointer values q1, q2, …, qg is encoded as a binary string. The individual strings are appended 

to each other thus forming the keyword WP or WR, depending on whether the chosen MTP 

basic keys were used to generate KP or KR. The binary strings representing the pointer values 

have a length a that depends on l, the length of master string B. More specifically, a is the 

logarithm of l to base 2. Both keywords are binary strings of length g∙a, where g is the 

number of the respectively chosen MTP basic keys. 
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3.11 Keyword ciphertexts 

 

The sender encrypts the keywords WP and WR using an asymmetric-key cipher and the public 

key of the receiver. WP when encrypted gives the keyword ciphertext AP. WR when encrypted 

gives the keyword ciphertext AR. The keywords WP and WR could also be combined into a 

single keyword W, for instance, by appending WR to WP, that is encrypted resulting in a 

combined keyword ciphertext A, instead of AP and AR.  

 

Alternatively, any sufficiently secure cypher, including symmetric-key cyphers, can be used 

for encrypting and securely transmitting the keywords. 

 

3.12 Transmission 

 

The sender transmits the plaintext ciphertext CP, the random key ciphertext CR, and the two 

keyword ciphertexts AP and AR, or A, to the receiver.  

 

The two ciphertexts CP and CR can be combined into one string, C, and transmitted as such 

(multiplex transmission). The rule of combination could be as follows: The bits of CP are 

consecutively represented by the odd-numbered bits, and the bits of CR are consecutively 

represented by the even-numbered bits, of the combined string C. Corresponding bits of CP 

and CR are then available at the receiver at virtually the same time. This is an advantage, in 

particular, when the data is streamed and to be continuously decrypted by the receiver. Also 

AP and AR, or A, and C can be combined into one string and transmitted as such so that the 

data transfer is entirely accomplished in a single overall combined string. For speed of 

decryption, the first bits of the combined string are those of AP and AR, or A, followed by 

those of C. 

 

3.13  Decryption 

 

If the data have been combined before transmission, the receiver first decombines them. That 

is, he separates the received data to obtain the two ciphertexts CP and CR and the keyword 

ciphertexts AP and AR or the combined keyword ciphertext A. 

 

Using the asymmetric-key cipher and his private key (or, alternatively, any sufficiently secure 

cypher), the receiver decrypts the two keywords WP and WR from the keyword ciphertexts AP 

and AR, or he decrypts the combined keyword W from the combined keyword ciphertext A and 

then separates WP and WR from W.  

 

From WP, he decodes the set of serial numbers or pointer values that identify the MTP basic 

keys used for generating KP. From WR, he decodes the set of serial numbers or pointer values 

that identify the MTP basic keys used for generating KR. Knowing the entire set of k MTP 

basic keys or the master string B of length l, he computes KP and KR using Eqs. (4) and (5). 

The receiver then computes the first random key by the XOR operation 

 

R1 = CR + KR (8) 

 

which, according to Eqs. (1) and (3), is the inversion of operation (7). Knowing R1 and, if 

required, KP and KR, he obtains the second random key, R2, by using the known computation 

rule. In the final step, the receiver finds the plaintext from the concatenated XOR operation 
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P = CP + KP + R1 + R2 (9) 

 

which is the inversion of operation (6). 

 

 

4 Security  

 

4.1 Brute-force attack 

 

Security against brute-force attack, that is, an exhaustive key search, is considered separately 

for the two methods of generating the MTP basic keys described above. 

 

If the MTP basic keys are generated by the first method described above and g is random with 

g ≤ k, the size of the private MTP key space, that is, the number of different such keys, 

corresponds to 2
k
. Assuming that the number of MTP basic keys is k = 256, the number of 

private MTP keys is 2
256

. This is much larger than 2
128

, the key space size that, based on a 

physical argument and the Landauer limit, is considered computationally secure if the keys 

are used in a symmetric-key cipher.  

 

If the MTP basic keys are generated by the second method described above, the size of the 

private MTP key space is different. For instance, when the length of the master string B is l = 

2
32

, corresponding to a size of B of 512 MB, and g is set to g = 4 (instead of being random 

with g ≤ l), the number of private MTP keys is almost (2
32

)
4
 = 2

128
 which is computationally 

secure. Apparently, g can be comparatively small in this variation and the computational 

effort in evaluating Eqs. (4) and (5) is correspondingly reduced.  

 

The above considerations refer to the case that only one private MTP key needs to be found. 

When using the cipher described by Eqs. (6) to (9), however, two keys must actually be found. 

Using the same parameters, the combined key space size then is (2
256

)
2
 = 2

512
 in the first 

method and (2
128

)
2
 = 2

256
 in the second method. Hence k could be reduced to k = 128 or 

smaller in the first method (at the same time keeping g random with g ≤ k) and g could be 

reduced to g = 2 in the second method. 

 

In summary, the MTP cipher is secure against brute-force attack provided parameter k or l on 

the one side and parameter g on the other are properly chosen. 

 

Care must be taken that the choice of the subset of MTP basic keys defining a private MTP 

key is perfectly random so that each subset within the limits defined for g (see below) has the 

same chance of being chosen.  

 

4.2 Known-plaintext attack 

 

It was shown above that a known-plaintext attack will fail when only CP and P are partly or 

fully known. If an attacker knows both the plaintext ciphertext CP and the random key 

ciphertext CR, he can XOR both strings leading to  

 

 CP + CR = (P + KP + R1 + R2) + (R1 + KR) = P + KP + KR + R2 (10) 

 

Although R1 has canceled, R2 is still present in the result. Thus, even if P is partly or fully 

known, for instance, if P is assumed to be a zero string, no information on the private MTP 
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keys KP and KR can be gained from this operation because these keys are still randomized by 

the presence of R2 that is unknown to the attacker. Hence the MTP cipher is secure against 

known-plaintext attack. 

 

 

5 Parameter choice 

 

The parameters s, k or l, and g are chosen such that the speed of data transfer and the 

computational hardware requirements are reasonably balanced. Furthermore, the parameters k 

or l, and g are chosen such that a brute-force attack will fail.  

 

If the MTP basic keys are generated by the first method described above, the k MTP basic 

keys must be stored by sender and receiver. The corresponding data volume is k∙s. For the 

computational hardware available today, a reasonable choice of s could be in the range of 2
23

 

to 2
30

 (corresponding to 1 MB to 128 MB), depending on the sort of data to be transferred. If 

k = 256, for example, the respective data volume to be permanently stored would be 256 MB 

to 32 GB. 

 

If the MTP basic keys are generated by the second method described above, only the master 

string B must be stored by sender and receiver. If the size of B is chosen to be l = 2
32

, for 

example, the respective data volume to be permanently stored would be 512 MB. This volume 

is independent of s, which could be as large as l. 

 

The computational effort in evaluating Eqs. (4) and (5) depends on the size s of the MTP 

basic keys and on the number g of MTP basic keys chosen to generate the private MTP keys. 

 

If the MTP basic keys are generated by the first method, g is generally in the range of 1 to k. 

However, it can be advantageous to limit g to minimum and maximum values, gmin and gmax, 

so that gmin ≤ g ≤ gmax. Choosing a maximum value gmax that is smaller than k has the 

advantage of reducing the effort required for computing the private MTP keys. At the same 

time, this would reduce the size of the private MTP key space and hence the security against 

brute-force attack. When the number of MTP basic keys is k = 256 and g is set to g = gmin = 

gmax = 16, for instance, the number of different private MTP keys is b(256 | 16) ≈ 1.033 ∙ 2
83

, 

where b(k | g) is the binomial coefficient indexed by k and g. The combined key space of two 

private MTP keys then has a size of (b(256|16))
2
 ≈ 1.068 ∙ 2

166
. This is larger than 2

128
, the 

key space size considered computationally secure (see above). Hence allowing g to be in the 

range 0 ≤ g ≤ 16 would also be computationally secure. In the latter case, the average 

computational effort in evaluating Eqs. (4) and (5) would be reduced by a factor of 16 

compared to allowing the maximum possible range of 0 ≤ g ≤ 256.  

 

If the MTP basic keys are generated by the second method, g can be set to a comparatively 

small value as shown in the above discussion of brute-force attack. The computational effort 

in evaluating Eqs. (4) and (5) is correspondingly small. 

 

When the keywords are transmitted using an asymmetric-key cipher, they should not be too 

long.  

 

When using the first encoding method described above, the keyword WP and WR are each 

binary strings of length k. If k = 256, for example, the size of one keyword is 256 bits, or 32 

bytes, and the combined size of two keywords is 64 bytes. Hence the RSA cipher with a key 
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size of 1,024 bits can be used to transmit both keywords in one unsplit transmission given that 

the maximum RSA message size then is 117 bytes.  

 

When using the second encoding method described above, the keyword WP and WR are each 

binary strings of length g∙a. If the MTP basic keys are taken as substrings of a master string B 

of length l that is chosen to be l = 2
32

 and g is set to g = 2 (reasonable choices with respect to 

security against brute-force attack, see above), for example, then a = log2(l) = 32 and g∙a = 2 ∙ 

32 = 64. Hence the size of one keyword is 64 bits, or 8 bytes, and the combined size of two 

keywords is 16 bytes. Again, this is smaller than 117 bytes and both keywords can be 

transmitted to the receiver in one unsplit transmission. 

 

 

6 Advantages 

 

The MTP cipher partly inherits the simplicity of the OTP cipher and can easily be 

implemented in computer software and hardware. Its advantage over the OTP cipher is that 

the key that is to be transmitted to the receiver is much shorter. Its advantage over other 

processes that involve the OTP cipher [1, 2, 3] is that the required random data is produced 

and handled more easily. 

 

A further advantage is that, once the private MTP keys KP and KR are generated by the sender 

and the information from which they can be regenerated is transmitted to the receiver, the 

ciphertexts CP and CR can continuously be generated by the sender and streamed to the 

receiver, who can continuously decrypt the data and produce the plaintext. That is, the 

receiver can begin to play the plaintext data, such as an audio or video, before the entire 

plaintext message has been encrypted and transmitted by the sender.  

 

For this purpose, the computation rule that generates R2 from R1 and/or KP and/or KR must be 

such that also R2 can be generated continuously. The computation rules using transposition 

defined above fulfill this requirement for the MTP cipher detailed in Section 3, but not 

necessarily for the variations of this cipher described below. 

 

 

7 Variations 

 

The MTP cipher can be varied in various ways leading to alternative processes that require 

the same or less degree of computational effort and provide the same or less degree of 

security. According to Eq. (6), the plaintext P is XORed with three different keys: the private 

MTP key KP, the first random key R1, and the second random key R2. Variations are obtained 

by replacing Eq. (6) with equations in which P is XORed with any one or any two of these 

three keys. Further variations are obtained by replacing Eq. (7) with equations in which the 

second private key KR is not XORed with the first random key R1 but with the second random 

key R2 or with both the first random key R1 and the second random key R2. This leads to 21 

different combinations of Eqs. (6) and (7) and their respective substitutes. Equations (8) and 

(9) are to be adapted accordingly. However, not all of these combinations are feasible and 

secure. In the following, some feasible variations are discussed. 

 

For example, the second random key R2 could be included in the generation of the random 

key ciphertext CR instead of in the plaintext ciphertext CP. This is equivalent to replacing the 

operations described by Eqs. (6) to (9) by the following operations: 
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CP = P + KP + R1 (6a) 

 

CR = R1 + R2 + KR (7a) 

 

R1 + R2 = CR + KR (8a) 

 

P = CP + KP + R1 (9a) 

 

Before performing operation (9a), R1 would have to be determined from (R1 + R2) and 

possibly KP and KR. The computation rule for generating R2 would have to be such that this is 

possible. When the first of the two computation rules described above has been used for 

generating R2, the first bit of the string to be calculated would have to be set to 0 or 1 leading 

to a string that could be either R1 or ¬R1 (where ¬ denotes an operator that flips all bits of the 

string it precedes). Hence both possibilities would have to be checked by using the resulting 

string for R1 in operation (9a). 

  

Another variation of the MTP cipher is obtained by omitting the private MTP key KP. In this 

case, the following set of operations is used instead of the one described by Eqs. (6) to (9): 

 

CP = P + R1 + R2 (6b) 

 

CR = R1 + KR (7b) 

 

R1 = CR + KR (8b) 

 

P = CP + R1 + R2 (9b) 

 

This variation can be vulnerable to a known-plaintext attack. Assume an attacker knows both 

ciphertexts, CP and CR, and a part of the plaintext P. He can then determine the corresponding 

bits of (R1 + R2) from inverting operation (6b). Depending on the computation rule for 

generating R2, bits of R1 might be deducible from bits of (R1 + R2) and the corresponding bits 

of KR then follow from inverting operation (7b). If enough bits of KR are known, the full 

private MTP key KR can be reconstructed (as explained above) and performing operation (8b), 

then applying the computation rule, and finally performing operation (9b) would disclose the 

plaintext. Thus, the computation rule would have to be such that bits of R1 are not easily 

deducible from bits of (R1 + R2). This can be achieved by using a computation rule that 

includes one or both of the private MTP keys, such as the second transposition rule described 

above. Alternatively, care must be taken that an attacker cannot obtain knowledge of, or 

guess, too many bits of plaintext. Because only one private MTP key is present, the 

parameters (i.e., k, l, g) must be chosen greater to achieve the same degree of security against 

brute-force attack. Hence omitting the private MTP key KP does not much reduce the overall 

computational effort. 

 

A variation of the previous variation is obtained by omitting the first random key R1, in 

addition to the private MTP key KP, when generating the plaintext ciphertext CP. In this case, 

the following set of operations is used instead of the one described by Eqs. (6) to (9): 

 

CP = P + R2 (6c) 

 



 
 
 

  14 

CR = R1 + KR (7c) 

 

R1 = CR + KR (8c) 

 

P = CP + R2 (9c) 

 

With a similar reasoning as for the previous variation, it can be shown that this variation is 

vulnerable to a known-plaintext attack, in this case, when bits of R1 are easily deducible from 

bits of R2. And, as before, the parameters must be chosen greater to achieve the same degree 

of security against brute-force attack. 

 

Another variation of the MTP cipher is obtained by omitting only the first random key R1, but 

keeping the private MTP key KP, when generating the plaintext ciphertext CP. In this case, the 

following set of operations is used instead of the one described by Eqs. (6) to (9): 

 

CP = P + KP + R2 (6d) 

 

CR = R1 + KR (7d) 

 

R1 = CR + KR (8d) 

 

P = CP + KP + R2 (9d) 

 

Instead of by Eq. (10), the result of XORing CP and CR would be described by 

 

 CP + CR = (P + KP + R2) + (R1 + KR) = P + KP + KR + R1 + R2 (10d) 

 

Both R1 and R2 remain present in the result. Because of the initial requirement that the 

computation rule for generating R2 is such that (R1 + R2) is as random as R1, an attacker 

cannot gain any information on the private MTP keys KP and KR even if P is partly or fully 

known. However, if an attacker appropriately transposes CP before XORing it with CR, the 

random keys R1 and R2 may cancel in case of certain choices of the computation rule, in 

particular, the first computation rule described above. Hence the computation rule must be 

carefully chosen to not make this variation vulnerable to a known-plaintext attack.  

 

Another variation of the MTP cipher is obtained by using only one and the same private MTP 

key, K, for producing both the plaintext ciphertext CP and the random key ciphertext CR. The 

following set of operations is then used instead of the one described by Eqs. (4) to (9): 

 

K = Bi + Bj + … + Bm + Bn (4e) 

 

CP = P + K + R1 + R2 (6e) 

 

CR = R1 + K (7e) 

 

R1 = CR + K (8e) 

 

P = CP + K + R1 + R2 (9e) 
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This variation can be vulnerable to a known-plaintext attack. Consider that the result of 

XORing CP and CR would be described by 

 

 CP + CR = (P + K + R1 + R2) + (R1 + K) = P + R2 (10e) 

 

If the plaintext P is partially known, the corresponding bits of R2 can be determined from an 

inverted Eq. (10e). Depending on the computation rule for generating R2, bits of R1 might be 

deducible from R2 and bits of K would then follow from an inverted Eq. (7e). If enough bits of 

K are known, the full private MTP key K can be reconstructed. R1 would then follow from Eq. 

(8e), R2 from applying the computation rule, and finally the plaintext P from performing Eq. 

(9e). Thus, the computation rule would have to be such that bits of R1 are not easily deducible 

from bits of R2. Again, this can be achieved by using a computation rule that includes one or 

both of the private MTP keys, such as the second transposition rule described above. 

Alternatively, care must be taken that an attacker cannot obtain knowledge of, or guess, too 

many bits of plaintext. Also here, the parameters (i.e., k, l, g) must be chosen greater to 

achieve the same degree of security against brute-force attack as achieved when using two 

private MTP keys so that using only one private MTP key does not much reduce the overall 

computational effort.  

 

The basic design of the MTP cipher outlined at the beginning of Section 2 can be considered 

another, simplified, variation of the augmented design of the MTP cipher detailed in Section 

3. It is characterized in that the two random keys R1 and R2 and the second private MTP key 

KR are omitted in the process. Thus, the following set of operations is used instead of the one 

described by Eqs. (6) to (9): 

 

CP = P + KP (6f) 

 

P = CP + KP (9f) 

 

As shown in Section 2, this variation is vulnerable to known-plaintext attack. Nevertheless, it 

might be sufficiently secure provided an attacker cannot obtain knowledge of, or guess, too 

many bits of plaintext. Again, because only one private MTP key is present, the parameters 

must be chosen greater to achieve the same degree of security against brute-force attack. 

 

Further variations of the MTP cipher are produced by replacing the XOR operations with 

other logical operations such as exclusive-nor (XNOR) logical operations. 

 

 

8 Conclusions 

 

A cipher for the secure and rapid transmission of data has been presented that is particularly 

useful for the high-speed transmission of mass data and for video or audio streaming. Its 

security and speed stems from encrypting and decrypting a plaintext with a one-time pad 

(OTP) key that is generated from a random choice of random basic keys possibly kept in a 

public library. Because the basic keys can be chosen and used multiple times, the method is 

called multiple-time pad (MTP) cipher. The information on the respective choice of basic 

keys is encoded in a short keyword that is transmitted to the receiver by secure means, 

preferably via an asymmetric-key cipher, so that the receiver can regenerate the OTP used by 

the sender and decrypt the plaintext.  
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It has been shown that the cipher is secure against brute-force attack provided the parameters 

are properly chosen. Security against known-plaintext attack is provided by encrypting and 

decrypting the plaintext with additional keys, that is, a first random key freshly generated by 

the sender for each application, and a second random key generated by the sender from the 

other keys by using a defined computation rule. The first random key is securely transmitted 

using the same MTP method as for transmitting the plaintext. Security against known-

plaintext attack stems mainly from the second random key not being transmitted but 

regenerated by the receiver from the other keys using the computation rule. 
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